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Abstract: Residue number system is widely used in application like cryptography, numeral analysis and signal 

processing. Random number generators are extensively used in cryptography and its design is based on 

traditional linear feedback shift registers. Residue number system are very suitable for the implementation of 

fast VLSI system. Modular adder is the basic component in RNS system. Suitable parallel prefix trees are used 

for the modular adder design. In this paper a performance comparison of modular adder of moduli set 2𝑛 −
2𝑘 − 1 is made and a random number generator based on this adder is proposed to generate random numbers 

with good randomness properties desirable for cryptographic applications. Moduli set with the form of 2𝑛 −
2𝑘 − 1 (1≤ 𝑘 ≤ 𝑛 − 2) is best suitable for multichannel RNS processing. The proposed model offers excellent 

randomness property which is the basic requirement for network security and also offers better area and delay 

performance. 
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I. Introduction 
The demand for new techniques in network security is increasing with the growth of network services 

in our world. Cryptography plays an important role in network security and it is a vital tool that provides 

security against various external and internal threats in the network. Data confidentiality is mainly achieved by 

means of cryptography. The aim of cryptographic techniques is to secure the information so that only the 

intended parties can read. For transmitting audio and video signals for cable TV, commercial and sensitive data 

and video conferencing the speed of the cryptographic module is required to be high. However the traditional 

software implementation of cryptographic algorithms are not efficient in real time applications. 

 
Fig 1 Cryptographic System 

The random number generator is a vital cryptographic module widely used for key generation and 

authentication protocols. The security of such  systems completely relies on the excellent randomness property 

provided by the generators. Thereby future sequence pattern in the random number sequence cannot be 

predicted by the observed sequence. The random number generators broadly categorized into true random 

number generator and pseudo random number generators. The design of cryptographically secure random 

number generator is extremely difficult. Linear feedback shift register is the traditional method for designing 

and generating random numbers which uses shift registers. This method has good statistical properties and leads 

to very efficient hardware implementation. Modular adders can be used to design LFSR for generating random 

numbers that can offer good randomness property.  

Modular adders are the most prime component of residue number system. RNS is an ancient numerical 

representation system. It is a non weighted numerical representation system and have carry free property in 
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addition and multiplication operations. Modular adder is the key module for RNS based DSP systems. Moduli 

set with the form of 2𝑛 − 2𝑘 − 1   can offer excellent balance among the RNS channels for multichannel RNS 

processing. This modular adder can be used to design LFSR based random number generator with good 

randomness property. 

This paper is organized as follows: Section II is a review of the related work used.RNS and modular 

adder arithmetics are discussed in Section III. An introduction of Parallel prefix trees is presented in Section IV. 

Section V presents the proposed design and Section VI gives the performance comparison. Conclusion and 

future work is given in Section VII. 

 

II. Related Work 
First a brief survey on modular adders were made and discussed the designing techniques of random 

number generators based on modular adders. Modular adders can be classified into two types: the general 

modular adder and the special modular adder and it is based on the form of modulus. In the former adder design 

the two values A+B and A+B+T should be computed first and one of them is selected as the final output. 

Bayoumi and Miller [2] proposed a general modular adder for arbitrary modulus by using 2 cascaded binary 

adders and its delay is the sum of two binary adders. Several modular adders with two binary adders to calculate 

A+B and A+B+T were proposed subsequently. However this approach offers better delay performance the area 

consumption is relatively larger and it is twice the binary adder. Reused binary adder configuration [3] is the 

another type of general modular adder design and was proposed by Dugdale. The drawback of this type of adder 

is that it will use two operation cycles to perform one modular addition. Subsequently many studies on modular 

adders were done that have better area and delay performance. A high speed and reduced area modular adder 

structure for RNS were proposed by Hiasat[6] where any regular carry lookahead based binary adder can be 

used in the final stage. This structure needs an extra CLA unit to get the carry out bit of A+B+T before the final 

CLA addition and as a result delay is not reduced significantly. ELMMA [9]algorithm is another popular 

modular adder design proposed by R.A. Patel. In this adder two carry computation modules for A+B and 

A+B+T were used and some carry computation units were shared. But in the worst cases almost two 

independent carry generation modules were used. Dimitris Bakalis [10]proposed fast parallel prefix adder for 

modulo 2𝑛 + 1 adders. This architecture is based on parallel prefix carry computation units. 

The complexity of special modular adder is much less than that of general modular adder since 

optimization is possible in special modular adder. The optimization is done according to the modulus. Several 

architecture for modulo 2𝑛 + 1 and 2𝑛 − 1 adder were proposed based on parallel prefix and carry 

correction.[10][19][20]. Piestrak [4] made a comprehensive study of residue generators and multioperand 

modular adders. He proposed a design using carry save adder with end around carry and are well suited for 

VLSI implementation, R.A. Patel [13] first proposed a literature on modulo 2𝑛 −  2𝑛−2 + 1 addition based on 

carry offset where the carry information of A+B+T is only required to calculate. The carry information for A+B 

is obtained by modifying the carries of A+B+T. Even if all the redundant modules of carry computation are 

eliminated, the structure of carry computation is fixed and can only perform the special modular addition of 

modulo  2𝑛 −  2𝑛−2 + 1 . In most of the RNS based application ,addition and multiplication intensive systems 

are used and the main issue is the selection of moduli set accordingly. For such systems residue channels are 

always expected as many as possible where dynamic range is fixed ie. the wordlength of the residue channels 

can be reduced inorder to achieve better speed performance. Width of the each channel is also expected as close 

as possible to get similar critical path delay and thereby fine balance is achieved between each residue channels. 

The modular adders discussed yet are high performance adders but are not always suitable to construct 

multichannel RNS that offers fine channel balance ie. It is haed to construct a multichannel that have fine 

balance with moduli set 2𝑛 + 1 and  2𝑛 − 1. Recently [1] Shang Ma and Jian Ho proposed a modular adder 

particularly applicable for RNS systems with modulus of the form 2𝑛 − 2𝑘 − 1  (1≤ 𝑘 ≤ 𝑛 − 2). These adder 

have outstanding performance in constructing multichannel moduli set with fine balance. L.Li, J Hu and Y Chan 

recently proposed a general architecture for 2𝑛 − 2𝑘 − 1 multiplier. However there were only little discussion 

and recently a detailed discussion was made [1]. 

Random number generators are the most vital component used in network security systems like 

cryptography and encryption techniques. Cryptography is mainly concerned with confidentiality where a 

message is converted from comprehensible form to incomprehensible form rendering it unreadable by 

interceptors and eavesdroppers. RNG[7] are basically classified as true and pseudo generators. A common 

method of producing a pseudo random number generators is to use the output of a linear feedback shift register. 
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Almost all PRNG patterns are reputable and predictable for small cycles. In this paper a new design for random 

number generator based on modular adder is proposed. This design uses a modular adder 2𝑛 − 2𝑘 − 1  which 

has better area and delay performance. This adder is best suitable for RNS multichannel since a class of modulo 

is designed instead of a single moduli based on different values of k. Moreover when LFSR design based on 

2𝑛 − 2𝑘 − 1 adder and conventional modular adder are compared the proposed gives better area and delay 

performance. Since randomness is the most important requirement in cryptography it is very necessary to design 

such generator that have good randomness property. This proposed random number generator based on LFSR 

offers excellent randomness property.  

In the rest of the paper a brief introduction of RNS and modular addition are presented in Section II. And 

Section III introduces the hardware architecture of modulo 2𝑛 − 2𝑘 − 1  adder. Section IV describes the proposed 

random number generator design. Performance of different modular adders and LFSR are evaluated and 

compared in Section V. 

 

III. Rns And Modular Arithmetics. 
 RNS arithmetic seems especially suitable for DSP hardware as rapid computation using simple 

operation of addition subtraction and multiplication can be performed which the basic arithmetic operations of 

DSP algorithms. RNS arithmetic also has the desirable properties for VLSI implementation of concurrency , 

modularity and fault tolerant capability. 

 Residue number system consists of N pairwise relatively prime moduli. A number X is represented as 

  𝑋 𝑚1 ,  𝑋 𝑚2 …… .  𝑋 𝑚𝑁   where  𝑋 𝑚 ∈  0,𝑚 − 1 , N>1, GCD  𝑚𝑖 ,𝑚𝑗  = 1, i, j = 1,2,….N and GCD is the 

greatest common divisor of 𝑚𝑖and 𝑚𝑗 . Let A and B be two integers represented by N-tuple word 

 𝑎𝑅𝑁𝑆
0 , 𝑎𝑅𝑁𝑆

1 …… . . 𝑎𝑅𝑁𝑆
𝑁−1  and  𝑏𝑅𝑁𝑆

0 , 𝑏𝑅𝑁𝑆
1 ,…… . 𝑏𝑅𝑁𝑆

𝑁−1  respectively in residue number systems. Let ◊ denote the 

binary operation of addition ,subtraction and multiplication. Then C=A◊B is isomorphic to 

𝐶 =  𝑐𝑅𝑁𝑆
0 , 𝑐𝑅𝑁𝑆

1 ,…… . . 𝑐𝑅𝑁𝑆
𝑁−1  where 𝑐𝑅𝑁𝑆

𝑖 =  𝑎𝑅𝑁𝑆
𝑖 ◊ 𝑏𝑅𝑁𝑆

𝑖   and i∈  0,𝑁 − 1 .𝑐𝑅𝑁𝑆
𝑖  is solely dependent on 𝑎𝑅𝑁𝑆

𝑖  

and 𝑏𝑅𝑁𝑆
𝑖 , this results in fast, parallel, independent processing within each of the N residue channels.The modulo 

m addition for integers A and B in the range of [0,m] is defined as 

C= 𝐴 + 𝐵 𝑚     =   
𝐴 + 𝐵𝐴 + 𝐵 < 𝑚

𝐴 + 𝐵 −𝑚𝐴 + 𝐵 ≥ 𝑚
     (1) 

If  C= 𝐴 + 𝐵 𝑚  and the bit width of the modular adder is n bit where n =  𝑙𝑜𝑔2𝑚  ie n is the smallest integer no 

less than 𝑙𝑜𝑔2𝑚. Then eqn (1) can be represented as  

C =  
𝐴 + 𝐵𝐴 + 𝐵 + 𝑇 < 2𝑛

 𝐴 + 𝐵 + 𝑇 2𝑛𝐴 + 𝐵 + 𝑇 ≥ 2𝑛
    (2) 

Where the correction factor 𝑇 = 2𝑛 −𝑚.that is if the carry out bit of A+B+T is ‗1‘ then the result of the 

modular addition is the least significant bits of A+B+T otherwise the result is A+B. 

 

A. Parallel Prefix Addition 

The key element in fast addition of two n-bit operands X and Y is in the reduction of the latency in the 

carry network. Carry computation can be considered as a prefix problem. This method is widely adopted in 

binary adder design where each sum bit 𝑠𝑖  and carry bit 𝑐𝑖can be calculated with the previous carries and inputs. 

Prefix based binary adder can be divided into3 units, the preprocessing unit, prefix computation and sum 

computation unit.In the preprocessing unit ,prefix computation is calculated as  

 𝑔𝑖 , 𝑝𝑖 =  𝑎𝑖𝑏𝑖 , 𝑎𝑖 ⊕ 𝑏𝑖  (3) 

where 𝑔𝑖and 𝑝𝑖  represents the 𝑖𝑡ℎ  carry generation and carry propagation  bits respectively. The prefix 

computation unit is used to compute the carry information used in the sum computation unit. For carry 

computation group generate and group propagate bits are obtained from 𝑔𝑖and 𝑝𝑖  respectively. 
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Fig 2. Prefix adder. 

 

 

 𝐺𝑖:𝑖
0 ,𝑃𝑖 :𝑖

0  =   𝑔𝑖 , 𝑝𝑖 

 𝐺𝑖 :𝑘
𝑙 ,𝑃𝑖 :𝑘

𝑙  =  𝐺𝑖:𝑗+1
𝑙−1 ,𝑃𝑖 :𝑗+1

𝑙−1  ● 𝐺𝑗 :𝑘
𝑙−1,𝑃𝑗 :𝑘

𝑙−1 

                           =  𝐺𝑖 :𝑗+1
𝑙−1 + 𝑃𝑖 :𝑗+1

𝑙−1 𝐺𝑗 :𝑘
𝑙−1 ,𝑃𝑖 :𝑗+1

𝑙−1 𝑃𝑗 :𝑘
𝑙−1 

 (4) 

Where i=0,1,….n-1, 0≤ 𝑘 ≤ 𝑗 ≤ 𝑙𝑙 = 1,2,… .𝑚  and  l represents the 𝑙𝑡ℎ  stage. There are several well known 

binary prefix addition structures such as Sklansky, Brent Kung, Kogge Stone, Han Carlson. There structures are 

usually called prefix trees. After prefix computation carries are obtained 𝑐𝑖 , i= 0,1,2…..n for 𝑖𝑡ℎ  bit and 

computed as 

 

𝑐0 = 𝑐𝑖𝑛
𝑐𝑖 = 𝐺𝑖−1:0

𝑙 + 𝑃𝑖−1:0
𝑙 𝑐𝑖𝑛

𝑐𝑜𝑢𝑡 = 𝑐𝑛

   (5) 

In the sum computation unit the carries 𝑐𝑖 , from prefix computation unit and partial sum 𝑝𝑖  from the 

preprocessing unit are used together to compute the final sum 𝑠𝑖 . 
𝑠𝑖 = 𝑝𝑖 ⊕ 𝑐𝑖𝑖 = 0,1,… .𝑛 − 1    (6) 

 

IV. Parallel Prefix Trees 
Parallel prefix structures are widely used in high performance adders as the delay is logarithmically 

proportional to the adder width. Parallel prefix adders basically consists of three stages and are pre processing, 

prefix computation and final sum computation. The parallel prefix trees are used in the prefix computation stage 

where group generate/propagate signals are computed at each bit. Any existing prefix structures can be used to 

get the carries. In this work different parallel prefix trees areused in the adder of modulo  2n − 2k − 1 and their 

performance are analysed. Sklansky, Kogge Stone, Brent Kung, Han Carlson are the common prefix trees that 

are used. 

 

A. Sklansky  

Sklansky prefix tree is the simplest among the prefix trees. Fig 3 shows the Sklansky prefix tree for 16 

bit operand. It has the least logic levels to compute carries. It uses less cells than Knowles and Kogge Stone 

prefix structure. But this tree have higher fanout. The fanout of such adders grows exponentially from input to 

output. This leads to a large delay as tHe adder operands‘ s width increases. It is the compacted version of Brent 

Kung where logic level is reduced and fanout is increased. 
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Fig 3 Sklansky Prefix Tree 

B  Kogge Stone  

This tree has a regular layout. It is widely considered in the fastest adder design and is used for high 

performance adders. Fig 4 shows the Kogge Stone prefix tree for 16 bit operand It takes more area to implement 

than the Brent Kung , but has a lower fanout at each stage and this increases the performance. Wiring congestion 

is often a problem for Kogge Stone adder as well 

 

 

 

 

 

 

 

 

C7C6C5  C4  C3C2C1    C0 

 

 

 

Fig 4 Kogge Stone Prefix Tree 

4.3 Brent Kung  

Brent Kung trees have large number of levels and so it reduces its operational speed. Fig 5 shows the 

Brent Kung prefix tree for16 bit operand It have the lowest area and delay with large number of inputs and 

hence it is power efficient. The number of cells required is less than the Kogge Stone therefore it takes less area 

to implement . However this adder is not the best for very fast addition. Brent Kung prefix tree is a bit complex 

to build because it has the most logice levels. 

 

 

 

 

 

 

 

 

 

 

C7C6C5  C4  C3C2C1    C0 

Fig 5 Brent Kung Prefix Tree 

4.4 Han Carlson 

The idea of Han Carlson prefix tree is very similar to Kogge Stone as it has a maximum fanout of 2. 

And it uses less cells and wire tracks than the Kogge Stone. Fig 6 shows the Han Carlson prefix tree for 16 bit 

operand . It requires extra logic level. It is viewed as a sparse version of Kogge Stone prefix tree.  
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Fig 6 Han Carlson Prefix Tree 

 

V. Novel  𝟐𝒏 − 𝟐𝒌 − 𝟏   Adder 
The adder structure used for the design of random number generator is shown in fig…. it is of modulus 

2𝑛 − 2𝑘 − 1   and composed of four units , preprocessing unit, carry generation, carry correction and sum 

computation unit. Generally this adder structure can be divided into two general binary adders A1 and A2 as 

shown in fig 7 with carry correction and sum computation unit. This is based on the characteristics of correction 

T for modulus  2𝑛 − 2𝑘 − 1  . any existing prefix structures can be used to compute the carries of A+B+T, 𝐶𝑖
𝑇  . 

and by correcting the carries 𝐶𝑖
𝑇  we can obtain the final carries 𝐶𝑖

𝑟𝑒𝑎𝑙  used in the final stage. Thus final modular 

addition result is obtained from  𝐶𝑖
𝑟𝑒𝑎𝑙  and partial sum information from the preprocessing units. The main 

interesting feature of thisarchitecture is that it avoids the calculation of carry information for A+B+Tand 

A+Bseparately. Thereby area and delay can be reduced significantly and offers flexible tradeoff between area 

and delay. 

 

A.Pre processing unit 

 This unit computes carry generation and carry computation bits for every bit I, 𝑖 ∈  0.𝑛 − 1  .When 

modulus m=2𝑛 − 2𝑘 − 1  ,then the correction factor is given as 𝑇 = 2 𝑙𝑜𝑔22𝑛−2𝑘−1 −𝑚. = 2𝑘 + 1. The binary 

representation of T is 00….001 00….001. the computation of A+B+T can be performed by A1 and A2 where 

A1 and A2 are used for lower-k bits and higher n-k bits addition respectively. Let 𝑇𝐴1= 00…001, 

𝑇𝐴2= 00…001 and the binary representation of A and B are 𝑎𝑛−1 … . 𝑎𝑘−1𝑎𝑘 … . 𝑎1𝑎0 and 

𝑏𝑛−1 … . 𝑏𝑘−1𝑏𝑘 … . 𝑏1𝑏0 respectively. 

 
Fig 7.  2𝑛 − 2𝑘 − 1  Adder structure 

 

The operation of adder A1 and A2 can be given as  

 
𝑆𝐴1 = 𝑎𝑘−1 … . 𝑎0 + 𝑏𝑘−1 … . 𝑏0 + 𝑇𝐴1

𝑆𝐴2 = 𝑎𝑛−1 … .𝑎𝑘 + 𝑏𝑛−1 … . 𝑏𝑘 + 𝑇𝐴2 + 𝑐𝐴1

         (7) 

Where 𝐶𝐴1 is the carry out bit of adder A1. This LSB bits of  𝑇𝐴1 is ‗1‘ and all others are ‗0‘.This A1 can be 

treated as a k-bit adder with lowest carry in bit since 𝑇𝐴1 is one of the input ofA1. Since the LSB bit of 𝑇𝐴1 is ‗1‘ 

it is considered for the carry generation and carry propagation bits and are computed as 

 
 𝑔0, 𝑝0 =  𝑎0 + 𝑏0, 𝑎0 ⊕ 𝑏0

                 𝑖 = 0

 𝑔𝑖 , 𝑝𝑖 =  𝑎𝑖𝑏𝑖 , 𝑎𝑖 ⊕ 𝑏𝑖                                  𝑖 = 1,2,… . 𝑘 − 1
 (8) 

       C7    C6     C5     C4      C3     C2     C1   C0 
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   The second adder A2 adds the constant 𝑇𝐴2 and the carry out bit 𝐶𝐴1 from adder A1. So it can be 

regarded as a 3-input adder with lowest carry in bit. The 3-inputs are 𝑎𝑛−1 … . 𝑎𝑘  , 𝑏𝑛−1 … . 𝑏𝑘  and 𝑇𝐴2. In this 

design the number of inputs is reduced from three to two for adder A2 by using Simple Carry Save adder 

(SCSA). The first stage of SCSA computes  𝑔𝑖
′ , 𝑝𝑖

′   for 𝑖 = 𝑘, 𝑘 + 1,…𝑛 − 1 

 𝑔𝑖
′ , 𝑝𝑖

′ =  𝑎𝑖𝑏𝑖 , 𝑎𝑖 ⊕ 𝑏𝑖  (9) 

   This 𝑔𝑖
′𝑝𝑖

′  are treated as the inputs of the second stage in SCSA. The carry generation and carry 

propagation bits for 𝑖 = 𝑘, 𝑘 + 1,…𝑛 − 1 are obtained from this second stage from  𝑔𝑖
′ , 𝑝𝑖

′   and 𝑇𝐴2. Thus the 

final output for preprocessing unit are 

 
 𝑔𝑘 , 𝑝𝑘 =  𝑝𝑘

′ ,𝑔𝑘
′  𝑖 = 𝑘

 𝑔𝑖 , 𝑝𝑖 =  𝑝𝑖
′𝑔𝑖−1

′ , 𝑝𝑖
′ ⊕𝑔𝑖−1

′  𝑖 = 𝑘 + 1,… . ,𝑛 − 1                
                        (10) 

 The carry out bit of SCSA, 𝐶𝑆𝐶𝑆𝐴  is required to compute the carry out bit of A+B+T, 𝐶𝑜𝑢𝑡 . It is calculated as 

𝐶𝑆𝐶𝑆𝐴 = 𝑎𝑛−1𝑏𝑛−1 =  𝑔𝑛−1
′  (11) 

 

B.Carry Generation Unit 

This unit uses any existing prefix structure to compute the carries 𝐶𝑖
𝑇  of A+B+T from carry generation 

and carry propagation bits of pre processing unit. The carry out bit of SCSA is not involved in the prefix 

computation . 𝐶𝑆𝐶𝑆𝐴  is combined with the carry out bit of prefix tree and determines the carry out bit of A+B+T, 

𝐶𝑜𝑢𝑡 . 

𝑐𝑜𝑢𝑡 = 𝑐𝑆𝐶𝑆𝐴 + 𝑐𝑛
𝑇 = 𝑐𝑆𝐶𝑆𝐴 + 𝐺𝑛−1:0 

= 𝑐𝑆𝐶𝑆𝐴 + 𝐺𝑛−1:𝑙 + 𝑃𝑛−1:𝑙𝐺𝑛−1:𝑙  

  = 𝑐𝑆𝐶𝑆𝐴 + 𝐺𝑛−1:𝑙 + 𝑃𝑛−1:𝑙𝑐𝑙
𝑇(12) 

 

C. Carry correction unit 

The final carries 𝐶𝑖
𝑟𝑒𝑎𝑙  used in the final sum computation stage for each bit is obtained from the unit. In 

this design the carries for A+B is 𝐶𝑖
𝑟𝑒𝑎𝑙  is obtained by correcting the carries 𝐶𝑖

𝑇   of A+B+T. Hence area is 

reduced.The relation between 𝐶𝑖
0  and   𝐶𝑖

1 𝑖 = 0,1,…𝑛 − 1  is derived where 𝐶𝑖
0  and   𝐶𝑖

1  are the carry outputs 

of prefix trees when the lowest carry in is ‗0‘ and ‗1‘ respectively.The relationship is given as 

𝐶𝑖+1
0  = 𝑃𝑖:0    𝐶𝑖+1

1  𝑖 = 0,1,…𝑛 − 1   (13) 

Where 𝑃𝑖 :0 =  𝑝𝑖𝑝𝑖−1 …… . . 𝑝0   and 𝑝𝑖 =  𝑎𝑖 ⊕ 𝑏𝑖 . This means that 𝐶𝑖
0 can be determined from 𝐶𝑖

1 by simple 

logic operation. This is the foundation of carry correction for this modular adder. The carry bit of A+B can be 

obtained with twice carry correction of A+B+T. Whether  carry correction is performed or not depends on the 

carry our bit of A+B+T, 𝐶𝑜𝑢𝑡 . 

Therefore the carry bits required by the modular adder are given as 

      𝐶𝑖
𝑟𝑒𝑎𝑙 =  

𝑐𝑖+1
𝑇  𝑐𝑜𝑢𝑡 + 𝑃𝑖:0                                                   𝑖 = 0,1,… , 𝑘 − 1

𝑐𝑖+1
𝑇  𝑐𝑜𝑢𝑡 + 𝑃𝑘−1:0

         𝑝𝑘 ⊕ 𝑐𝑘
𝑇                         𝑖 = 𝑘                      

𝑐𝑖+1
𝑇  𝑐𝑜𝑢𝑡 + 𝑃𝑖:𝑘+1

       + 𝑃𝑘−1:0
         𝑝𝑘 ⊕ 𝑐𝑘

𝑇            𝑖 = 𝑘 + 1,… ,𝑛 − 2

  (14) 

 

D . Sum computation unit 

  This unit computes the final result for modular adder. It is same as that in prefix based binary adder. 

𝐶𝑖
𝑟𝑒𝑎𝑙  is used for final computation of sum with respect to 𝐶𝑜𝑢𝑡 . If 𝐶𝑜𝑢𝑡 = 0,𝐶𝑖

𝑟𝑒𝑎𝑙 is the carry bit of A+B, 

otherwise it is the carry bit of A+B+T. the partial sum bits of A+B and A+B+T are both required in the final 

sum computation.Let 𝑝𝑖
0and 𝑝𝑖

1  be the partial sum of A+B and A+B+T respectively 

 

𝑝0
0 = 𝑝0   , 𝑝0

1 = 𝑝0𝑖 = 0

𝑝𝑘
0 = 𝑝𝑘   , 𝑝𝑘

1 = 𝑝𝑘 𝑖 = 𝑘

𝑝𝑖
0 = 𝑝𝑖

1 = 𝑝𝑖 𝑖 = 1,… . , 𝑘 − 1, 𝑘 + 1,… . ,𝑛 − 1

 (15) 

Hence  

𝑠0 = 𝑐𝑜𝑢𝑡     𝑝0
0 + 𝑐𝑜𝑢𝑡 𝑝0

1 = 𝑐𝑜𝑢𝑡 𝑝0        + 𝑐𝑜𝑢𝑡 𝑝0 = 𝑐𝑜𝑢𝑡 ⊕𝑝0    
                                             𝑠𝑘 = 𝑐𝑘

𝑟𝑒𝑎𝑙 ⊕  𝑐𝑜𝑢𝑡     𝑝𝑘
0 + 𝑐𝑜𝑢𝑡 𝑝𝑘

1 = 𝑐𝑘
𝑟𝑒𝑎𝑙 ⊕  𝑐𝑜𝑢𝑡 𝑝𝑘        + 𝑐𝑜𝑢𝑡 𝑝𝑘  

                                                  = 𝑐𝑘
𝑟𝑒𝑎𝑙 ⊕ 𝑐𝑜𝑢𝑡 ⊕𝑝𝑘   (16) 

When 𝑖 = 1,… . , 𝑘 − 1, 𝑘 + 1,… . ,𝑛 −1 

                                                            𝑠𝑖 = 𝑐𝑖
𝑟𝑒𝑎𝑙 ⊕ 𝑝𝑖   (17) 
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  Therefore the sum bits for all i are, 

                                               𝑠𝑖 =  

𝑐𝑜𝑢𝑡 ⊕ 𝑝0   𝑖 = 0

𝑐𝑘
𝑟𝑒𝑎𝑙 ⊕ 𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘   𝑖 = 𝑘

𝑐𝑖
𝑟𝑒𝑎𝑙 ⊕𝑝𝑖 𝑖 = 1,… . , 𝑘 − 1, 𝑘 + 1,… . ,𝑛 − 1

                                          (18) 

This  𝐶𝑜𝑢𝑡 ⊕ 𝑝𝑘     and 𝐶𝑖
𝑟𝑒𝑎𝑙 can be obtained at the same time. Therefore there is no extra delay. 

 
Fig 8 modulo 28 − 24 − 1  adder 

 

VI. Proposed System 
The data confidentiality in secured communication system is achieved by means of cryptography. This 

security is maintained by keeping the secret key used for data encryption and decryption confidential. The secret 

keys should be extremely strong enough so that attackers and eavesdroppers could not predict out and break the 

cipher text and misuse it.. Therefore we require strong keys. The keys are usually generated by simple random 

number generators. And the random numbers generated must have excellent randomness properties. Fig 4 shows 

a conventional random number generator based on linear feedback shift register.  

 
Fig 9. Conventional LFSR 

The generator is uses  XOR based feedback. The input of shift register is the linear function of previous states. 

Fig shows the proposed design for random number generator that have excellent randomness properties. In this 

design the XOR based feedback is replaced by modular adder.  

 
Fig 10 Proposed random number generator. 
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Whenever the sum exceeds the modulus, the adder produces an exactly different result as sum. By keeping the 

moduli sets used in the design of modular adders confidential we can produce extremely strong cipher texts 

rendering it unreadable by interceptors and eavesdroppers. The moduli set 2𝑛 − 2𝑘 − 1 is very suitable in 

constructing balanced multichannel with fixed dynamic range and similar critical path delay. So by employing 

2𝑛 − 2𝑘 − 1 modular adder we could get generator with excellent randomness property, large dynamic range  

and better performance which is very suitable for cryptography application. 

 

6. Fpga Implementation  And Performance  Comparison 

A.  FPGA Implementation 

To understand the effectiveness of the proposed design, it is implemented on FPGA of device family 

SPARTAN 3E. this id synthesized in Xilinx 13.3 version. The simulation result for 2𝑛 − 2𝑘 − 1 modular adder 

and random number generator are shown.Table 1 shows the device utilization summary and timing report  for 

various adder and the proposed adder. Fig 6 and Fig 7 shows the simulation waveform of modular adder and 

random number generator. 

Table. 1. Logic utilization and Timing report 

 

Area and delay of the 2𝑛 − 2𝑘 − 1   adder influence the area and delay of proposed LFSR design. So it 

is required to reduce the factors of adder so that we can improve the performance of LFSR correspondingly. In 

[2] where two binary adders are used to get A+B and A+B+T simultaneously. Since two adders are used the 

area requirement is much greater than other adders. In [3] where single binary adder is used to compute the 

result but requires twice the clock cyles. Delay is much increased in this scheme. An another scheme of modulo 

2𝑛 − 2𝑛−2 − 1 which is a special case of our adder has relatively small delay and give better area delay 

performance. The adder 2𝑛 − 2𝑘 − 1    adder offers a difference set of moduli for difference values of ‗k‘. That 

is it is a general design architecture for different modulus. Therefore some optimizations and extra design are 

applied for such purpose making it suitable for multichannel RNS application. However even if these 

optimizations are done  it still offers better area and delay performance compared to [2][3] [13]. Thus by 

employing this adder fastest and large dynamic range LFSR can be obtained with excellent randomness 

property. 

 

Modular adders 
 

No of Slices 
(Available 4656) 

 

No of 4 i/p LUTs 
(Available 9312) 

 

Delay (ns) 
 

Bayoumi [2] 

 

17 29 14.687 

Dugdale [3] 

 

25 41 33.735. 

2^(n)-2^(n-2)-1 [13] 

 

12 21 11.831. 

2^n-2^k-1 

 

19 33 14.878 
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Fig 11  . Simulation of 28 − 24 − 1modular adder. 

 

 
Fig 12  . Simulation of proposed random number generator. 

 

Table II. Logic utilization and Timing report for 2𝑛 − 2𝑘 − 1 modular adder with different parallel prefix trees. 
Parallel Prefix 

Trees 

Sklansky Kogge Stone Brent Kung Han Carlson Harris 

No of Slices 19 19 18 22 22 

No of 4 I/P LUTs 33 34 33 38 38 

No of Bonded 

IOBs 

24 24 24 24 24 

Delay(ns) 14.878 14.637 14.667 14.684 14.684 

 

VII. Conclusion 
In this paper a new design approach for random number generator using modular adder is proposed. 

The proposed design consists of shift registers and modular adders. And modular adder is constructed of four 

units, preprocessing, carry computation, carry correction and sum computation unit. An analysis of performance 

of modular adders with different parallel prefix trees are also made. On comparison the Sklansky prefix tree 

offers the best area and delay performance with least number of logic levels . Since the modular adder use twice 
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carry corrections instead of carry computation improved the area and timing in VLSI implementation and 

reduces the redundant units of parallel computation of A+B+T and A+B in the traditional adder. Hence 

comparison shows the LFSR designed using 2𝑛 − 2𝑘 − 1   offer better area and delay performance when 

compared with traditional adders. The modulus with the form of 2𝑛 − 2𝑘 − 1  facilitates the construction of 

RNS channels with large dynamic and more balanced complexity among each residue channels. 
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